Optimising Incremental Dialogue Decisions Using Information Density for Interactive Systems

نویسندگان

  • Nina Dethlefs
  • Helen F. Hastie
  • Verena Rieser
  • Oliver Lemon
چکیده

Incremental processing allows system designers to address several discourse phenomena that have previously been somewhat neglected in interactive systems, such as backchannels or barge-ins, but that can enhance the responsiveness and naturalness of systems. Unfortunately, prior work has focused largely on deterministic incremental decision making, rendering system behaviour less flexible and adaptive than is desirable. We present a novel approach to incremental decision making that is based on Hierarchical Reinforcement Learning to achieve an interactive optimisation of Information Presentation (IP) strategies, allowing the system to generate and comprehend backchannels and barge-ins, by employing the recent psycholinguistic hypothesis of information density (ID) (Jaeger, 2010). Results in terms of average rewards and a human rating study show that our learnt strategy outperforms several baselines that are not sensitive to ID by more than 23%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimising Turn-Taking Strategies With Reinforcement Learning

In this paper, reinforcement learning (RL) is used to learn an efficient turn-taking management model in a simulated slotfilling task with the objective of minimising the dialogue duration and maximising the completion task ratio. Turn-taking decisions are handled in a separate new module, the Scheduler. Unlike most dialogue systems, a dialogue turn is split into microturns and the Scheduler ma...

متن کامل

Optimising Incremental Generation for Spoken Dialogue Systems: Reducing the Need for Fillers

Recent studies have shown that incremental systems are perceived as more reactive, natural, and easier to use than non-incremental systems. However, previous work on incremental NLG has not employed recent advances in statistical optimisation using machine learning. This paper combines the two approaches, showing how the update, revoke and purge operations typically used in incremental approach...

متن کامل

Incremental Spoken Dialogue Systems: Tools and Data

Strict-turn taking models of dialogue do not accurately model human incremental processing, where users can process partial input and plan partial utterances in parallel. We discuss the current state of the art in incremental systems and propose tools and data required for further advances in the field of Incremental Spoken Dialogue Systems. 1 Incremental Spoken Dialogue Systems For Spoken Dial...

متن کامل

A New Statistical Model for Evaluation Interactive Question Answering Systems Using Regression

The development of computer systems and extensive use of information technology in the everyday life of people have just made it more and more important for them to make quick access to information that has received great importance. Increasing the volume of information makes it difficult to manage or control. Thus, some instruments need to be provided to use this information. The QA system is ...

متن کامل

Incremental Semantics for Dialogue Processing: Requirements, and a Comparison of Two Approaches

Truly interactive dialogue systems need to construct meaning on at least a word-by-word basis. We propose desiderata for incremental semantics for dialogue models and systems, a task not heretofore attempted thoroughly. After laying out the desirable properties we illustrate how they are met by current approaches, comparing two incremental semantic processing frameworks: Dynamic Syntax enriched...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012